curvature scalar - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

curvature scalar - перевод на русский

SCALAR QUANTITY CONSTRUCTED OUT OF SECOND DERIVATIVES OF A (PSEUDO-)RIEMANNIAN METRIC
Ricci curvature scalar; Ricci scalar; Ricci scalar curvature; Curvature scalar; Curvature Scalar

curvature scalar         

математика

скаляр кривизны

scalar curvature         

математика

скалярная кривизна

scalar quantity         
WIKIMEDIA DISAMBIGUATION PAGE
Scalars; Scalar quantity; Scalar quantities; Scalar (disambiguation); Scalar value
скалярная величина

Определение

scalar
1. <mathematics> A single number, as opposed to a vector or matrix of numbers. Thus, for example, "scalar multiplication" refers to the operation of multiplying one number (one scalar) by another and is used to contrast this with "matrix multiplication" etc. 2. <architecture> In a parallel processor or {vector processor}, the "scalar processor" handles all the sequential operations - those which cannot be parallelised or vectorised. See also superscalar. 3. <programming> Any data type that stores a single value (e.g. a number or Boolean), as opposed to an aggregate data type that has many elements. A string is regarded as a scalar in some languages (e.g. Perl) and a vector of characters in others (e.g. C). (2002-06-12)

Википедия

Scalar curvature

In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

The definition of scalar curvature via partial derivatives is also valid in the more general setting of pseudo-Riemannian manifolds. This is significant in general relativity, where scalar curvature of a Lorentzian metric is one of the key terms in the Einstein field equations. Furthermore, this scalar curvature is the Lagrangian density for the Einstein–Hilbert action, the Euler–Lagrange equations of which are the Einstein field equations in vacuum.

The geometry of Riemannian metrics with positive scalar curvature has been widely studied. On noncompact spaces, this is the context of the positive mass theorem proved by Richard Schoen and Shing-Tung Yau in the 1970s, and reproved soon after by Edward Witten with different techniques. Schoen and Yau, and independently Mikhael Gromov and Blaine Lawson, developed a number of fundamental results on the topology of closed manifolds supporting metrics of positive scalar curvature. In combination with their results, Grigori Perelman's construction of Ricci flow with surgery in 2003 provided a complete characterization of these topologies in the three-dimensional case.

Как переводится curvature scalar на Русский язык